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Abstract. Frontal polymerization is a process in which a spatially localized reaction zone propagates into a
monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of a monomer
and initiator is placed into a test tube. Upon reaction initiation at one end of the tube a self-sustained thermal wave,
in which chemical conversion occurs, develops and propagates through the tube. In a previous paper, a perfectly
insulated tube (i.e.,an adiabatic polymerization process) was considered. In reality, it is nearly impossible to
eliminate heat losses completely, and an accurate model must take this into account. Extinction of polymerization
waves and difficulties initiating the wave, both as a result of heat losses, are often encountered in experiments.
This paper will therefore concentrate onnonadiabaticfrontal polymerization.

The propagation of nonadiabatic free-radical polymerization fronts is studied by methods originally developed
in combustion theory, and employed in a previous paper. This analysis is accomplished by examination of the
structure of the polymerization wave, its propagation velocity, degree of conversion of the monomer and maximum
temperature, and how these quantities are affected by changes in initial temperature, concentrations and kinetic
parameters. The values of these quantities near the extinction limit (beyond which traveling-wave solutions will
no longer exist) are compared to those in the adiabatic case.
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1. Introduction

Frontal polymerization is a process in which a spatially localized reaction zone propagates into
a monomer, converting it into a polymer [1], [2]. In the simplest case of free-radical polymer-
ization a mixture of a monomer and initiator is placed into a test tube. Upon reaction initiation
at one end of the tube a self-sustained thermal wave, in which chemical conversion occurs,
develops and propagates through the tube. This unusual method of polymerization holds
promise as a method of producing currently available materials in a more energy-efficient
process, and of producing superior thermoset materials [3]. Before any of these advantages
can be achieved, a better understanding of the factors that affect frontal polymerization is
necessary. In our previous paper [4] we considered a perfectly insulated tube (i.e.,an adiabatic
polymerization process). In reality, it is nearly impossible to eliminate heat losses completely,
and an accurate model must take this into account.

The effects of heat loss on reaction-wave propagation have been studied in the context of
combustion problems. Classical results [5] concerning nonadiabatic combustion waves with
narrow reaction zones and one-step overall idealized kinetics state that, if the heat loss co-
efficientα exceeds a critical value, the combustion wave cannot propagate. The propagation
velocity uα decreases asα increases. At the extinction limit, the propagation velocity was
found to satisfy the relationuext = e−1/2uad, whereuad is the propagation velocity for the
adiabatic case. This result cannot be directly applied to the frontal polymerization process
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302 P. M. Goldfeder and V. A. Volpert

in which case the kinetics are much more complicated, but may be useful for the sake of
comparison.

Extinction of polymerization waves as well as difficulties with initiating the wave are often
encountered in experiments. Thus, the study of nonadiabatic frontal polymerization would be
of great practical importance.

In this paper we model and study the propagation of nonadiabatic free-radical polymer-
ization fronts. We examine the structure of the polymerization wave, its propagation velocity,
degree of conversion of the monomer, maximum temperature, and how these quantities are
affected by changes in initial temperature, concentrations and kinetic parameters. Also, com-
parisons are made between the values of these quantities near the extinction limit and those in
the adiabatic case.

2. Mathematical model

The propagation of free-radical polymerization fronts involves the usual free-radical mecha-
nism [6] consisting of decomposition, initiation, propagation and termination reactions. For
the process studied in this paper, the characteristic scale of the polymerization wave is much
smaller than the vessel through which it propagates, so that a traveling wave coordinate (x)
may be introduced. At one side of the vessel (x = −∞) there is a fresh mixture of monomer
and initiator, and on the other side (x = ∞) there is the inactive polymer, or products, that are
left behind in the wave’s wake. The kinetic equations describing this system are written as

uI ′ + kdI = 0, (2.1)

uR′ − 2f kdI + kpRM + ktRṖ = 0, (2.2)

uM ′ + kpRM + kpMṖ = 0, (2.3)

uṖ ′ − kpRM + ktRṖ + kt Ṗ 2 = 0, (2.4)

uP ′ − ktRṖ − kt Ṗ 2 = 0, (2.5)

whereu is the propagation velocity of the wave which must be determined in the course of
solution of the problem. HereI , R, M, andP denote the concentrations in mol/L of the
initiator, free radicals, monomer, and inactive polymer,Ṗ is the concentration of the polymer
radicals, and prime denotes the derivative with respect tox. Next,kd , kp, andkt are the rate
constants for the decomposition, propagation, and termination reactions, respectively, that are
all taken in the form of Arrhenius exponentials

kd(T ) = k0
d exp(−Ed/RgT ), kp(T ) = k0

p exp(−Ep/RgT ),
kt (T ) = k0

t exp(−Et/RgT ),
whereRg is the gas constant,k0

d , k
0
p, andk0

t are the pre-exponential factors, andEd , Ep, and
Et the activation energies for the corresponding reactions, andT is the temperature.

Equation (2.1) describes the consumption of the initiator occurring in the decomposition
reaction. Equation (2.2) describes both the production (the 2f kdI term) and consumption
(thekpRM andktRṖ terms) of the free radicals. These radicals are produced in the initiator
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decomposition reaction and consumed in the propagation and termination reactions. In the
decomposition reaction,f is an efficiency factor which is necessary to account for the fact that
not all of the radicals produced survive to initiate polymer chains. In a similar way, various
terms in the remaining Equations (2.3)–(2.5) describe the production and/or consumption of
the monomer, polymer radicals and inactive polymer, respectively. Note that (2.5) decouples
from the remaining equations.

These kinetic equations must be supplemented by the energy balance in the system, which
accounts for thermal diffusion, heat release, and heat loss in the polymerization process. Since
the heat release occurs mainly in the propagation step [7], the energy balance takes the form

κT ′′ − uT ′ − quM ′ − α(T − T0) = 0, (2.6)

whereT0 is the ambient temperature,κ is the thermal diffusivity of the mixture (assumed
to be constant),α is the heat loss coefficient andq is the increase in temperature associated
with converting 1 mol/L of monomer into polymer. We will study a simplified kinetic system
by using a steady-state assumption regarding the total concentration of the radicals. Under
this fairly common assumption, employed in many texts and papers on polymerization (see,
for example, [4], [6], [8], and [9]), the rate of change of the combined concentration of the
radicals,R and Ṗ , is much smaller than the rates of their production and consumption, so
that there is a simple algebraic balance between the amounts of radical and initiator. This
assumption reduces Equations (2.2)–(2.4) to a single equation

uM ′ + keff

√
I M = 0, (2.7)

where the effective rate constant,keff, pre-exponential factor,k0
eff, and activation energy,Eeff,

are given by

keff = k0
eff exp(−Eeff/RgT ), k0

eff = k0
p

√
2f k0

d

k0
t

, Eeff = Ep + Ed − Et
2

. (2.8)

Thus, our model consists of the mass and energy balances (2.1), (2.6), and (2.7), and the
boundary conditions at the left (x = −∞) and right (x = ∞) ends of the tube. For calcula-
tional simplicity, we make a change of variables for the initiator,I = J 2, and for convenience
rewrite the modified equations as

uJ
′ + Jk1(T ) = 0, (2.9)

uM
′ + JMk2(T ) = 0, (2.10)

κT
′′ − uT ′ − α(T − T0) = quM ′

. (2.11)

The boundary conditions at the left (x = −∞) and right (x = +∞) boundaries are

x = −∞ : M = M0, T = T0, J = J0, x = +∞ : T = T0. (2.12)

HereJ0 andM0 are the concentration of initiator and monomer present in the initial mixture,
and

k1(T ) = 1
2kd(T ) = k01 e−E1/RgT , k01 = 1

2k
0
d , E1 = Ed,
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k2(T ) = keff(T ) = k02 e−E2/RgT , k02 = k0
eff, E2 = Eeff.

At points far behind the propagating front (x → ∞) the temperature will reach a constant
value, namely the ambient temperature,T0. At this point, the temperature will not be high
enough to cause appreciable decomposition of the initiator. If decomposition does not occur,
then neither will initiation or propagation. Thus, bothJ (x) andM(x) will take on constant
values far behind the front. These values will be calledJf andMf . In the adiabatic case,
Jf was zero because the temperature far behind the front was sufficiently high for the de-
composition reaction to come to completion. For the nonadiabatic problem that we discuss
in this paper, the maximum temperature,Tm, will be reached at a certain point in space,xm,
but as Figure 1 shows, the temperature drops immediately after this due to heat losses. The
maximum temperature,Tm, as well as the quantitiesJf andMf are important characteristics
of the polymerization process and must be determined.

Though frontal polymerization is much slower and significantly less exothermic than com-
bustion processes, nondimensional parameters, such asRgTm/E1 andRgTm/E2, that deter-
mine the structure of the wave are of the same order as the corresponding small parameters
in combustion problems. Thus, the methods developed in combustion theory, which are based
on various modifications of the large activation energy asymptotics, can be used to attack the
frontal polymerization problem. A technique used with great success in both our previous
work [4], and a number of combustion studies (see, for example, [10] and [11]) which yields
correct qualitative, as well as quantitative, results is to replace the usual Arrhenius dependence
of the reaction rate,kn(T ) (n = 1,2), with the step function

k̂n(T ) =
{

0, T < Tn

An, T > Tn
(n = 1,2), (2.13)

where

Tn = Tm(1− εn), An = kn(Tm), εn = RgTm/En (n = 1,2). (2.14)

Here,Tn (n = 1,2) are the temperatures at which the first and second reactions begin,εn
are small dimensionless parameters,An are the heights of the step functions, andkn(Tm)
are the reaction rates evaluated at the maximum temperature,Tm. Thus, the actual Arrhenius
temperature dependence is replaced by the step function with height equal to the maximum
of the Arrhenius function. The integral values of the two over the range fromT0 to Tm are
approximately equal. This approximation is motivated by the fact that the reactions occur in
such a narrow zone that they can be considered as nearly instantaneous or localized, making
the reaction rates behave quite similarly to Dirac delta functions [12]. The use of a step
function will be further justified in the Appendix where we examine the simpler case of a
single chemical reaction and compare known results with Arrhenius temperature dependence
to those with a step function approximation.

For the parameter values used in our model, the activation energy for the decomposition
reaction (E1) is almost double that of the polymerization reaction (E2), so that the temperature
required for the polymerization reaction to begin (T2) is actuallylessthan that required for the
decomposition reaction to begin (T1). Thus, with Equations (2.9)–(2.11) and the step function
in place of the Arrhenius dependence (2.13), it is possible for the polymerization reaction to
occur prior to the decomposition reaction. To correct this inconsistency, we need to modify our
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Figure 1. Schematic of nonadiabatic polymerization front.

model slightly. We can do this by introducing a Heaviside function,χ , in the polymerization
reaction. We rewrite Equation (2.10) as

uM
′ + χ(J0− J )JMk2(T ) = 0. (2.15)

Thus, the polymerization cannot begin, unlessJ < J0 (i.e., the decomposition reaction has
already begun).

Since the set of equations is invariant under spatial translation, we let the point in space
where the temperature reaches the valueT1 (and thus both reactions begin) bex = 0. Sim-
ilarly, we label the points in space where the temperature increases toTm (its maximum),
decreases toT1, and then drops toT2 asxm, x1, andx2, respectively (see Figure 1). Thus, the
spatial region fromx = −∞ to x = +∞ can be divided into four regions: (−∞,0), (0, x1),
(x1, x2), and (x2,∞). In the first of these regions, neither reaction has begun (x < 0, k1(T ) =
k2(T ) = 0), in the second both reactions have occurred (0< x < x1, k1(T )k2(T ) 6= 0),
in the third the first reaction is completed, but the second is not (x1 < x < x2, k1(T ) =
0, k2(T ) 6= 0), and in the final region neither reaction occurs because of the low temperature
(x > x2, k1(T ) = k2(T ) = 0). Thus, we can state Equations (2.9)–(2.11) for each of the four
regions as

uJ
′ = 0, uM

′ = 0, κT
′′ − uT ′ − α(T − T0) = 0 (x < 0), (2.16)

uJ
′ + JA1 = 0, uM

′ + JMA2 = 0,

κT
′′ − uT ′ − α(T − T0) = quM ′

(0< x < x1), (2.17)

uJ
′ = 0, uM

′ + JMA2 = 0,

κT
′′ − uT ′ − α(T − T0) = quM ′

(x1 < x < x2), (2.18)

uJ
′ = 0, uM

′ = 0, κT
′′ − uT ′ − α(T − T0) = 0 (x > x2). (2.19)

The boundary conditions are given in (2.12). In addition, there are matching conditions at
x = 0, x1, andx2 that constitute continuity of the mass, temperature and temperature gradient
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distributions in the polymerization wave, and the condition that the temperature attains a
maximum atx = xm, where its derivative must be zero:

J (0−) = J (0+), M(0−) = M(0+),
T (0−) = T (0+) = T1, T

′
(0−) = T ′(0+), (2.20)

J (x−1 ) = J (x+1 ), M(x−1 ) = M(x+1 ),
T (x−1 ) = T (x+1 ) = T1, T

′
(x−1 ) = T

′
(x+1 ), (2.21)

J (x−2 ) = J (x+2 ), M(x−2 ) = M(x+2 ),
T (x−2 ) = T (x+2 ) = T2, T

′
(x−2 ) = T

′
(x+2 ), (2.22)

T (xm) = Tm, T
′
(xm) = 0. (2.23)

3. Solution

We found solutions of the Equations (2.16)–(2.19) subject to the boundary conditions (2.12)
and matching conditions (2.20)–(2.22) by first solving the equations forJ (x) andM(x), and
then substituting the results in the equation forT (x). Solving forJ (x) andM(x) over all of
space yields

J (x) =


J0, x < 0,

J0 e−A1x/u, 0< x < x1,

J0 e−A1x1/u ≡ Jf , x > x1,

(3.1)

and

M(x) =


M0, x < 0,

M0 exp[a(e−B
u
κ
x − 1)], 0< x < x1,

M0 exp[a(e−Bξ1 − 1)+ Ba e−Bξ1(ξ1− u
κ
x)], x1 < x < x2,

M0 exp[a(e−Bξ1 − 1)+ Ba e−Bξ1(ξ1− ξ2)] ≡Mf , x > x2,

(3.2)

whereJf andMf are the amounts of initiator and monomer remaining after both reactions
have ceased, and

a = A2J0

A1
, B = κA1

u2
, ξn = u

κ
xn (n = 1,2). (3.3)

Solving the equations forT (x) yields

T (x) = T0+ eµ1x
q

d

∫ x

x2

M
′
(τ)e−µ1τ dτ − eµ2x

q

d

∫ x

0
M
′
(τ)e−µ2τ dτ, (3.4)

which is valid over the entire spatial region. Here,M is given by Equation (3.2). In addition,
we introduced the following quantities

d =
√

1+ 4
κα

u2
, µ1,2 = u

2κ
(1± d). (3.5)
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This solution satisfies the boundary conditions given in Equations (2.12), and is continuous,
along with its first derivative, over all space. Applying the remaining conditions in Equations
(2.20)–(2.23) we obtain five equations

T1− T0 = −q
d

∫ x2

0
M
′
(τ)e−µ1τ dτ, (3.6)

T1− T0 = −eµ1x1
q

d

∫ x2

x1

M
′
(τ)e−µ1τ dτ − eµ2x1

q

d

∫ x1

0
M
′
(τ)e−µ2τ dτ, (3.7)

T2− T0 = −eµ2x2
q

d

∫ x2

0
M
′
(τ)e−µ2τ dτ, (3.8)

Tm − T0 = −eµ1xm
q

d

∫ x2

xm

M
′
(τ)e−µ1τ dτ − eµ2xm

q

d

∫ xm

0
M
′
(τ)e−µ2τ dτ, (3.9)

0= −µ1 eµ1xm

∫ x2

xm

M
′
(τ)e−µ1τ dτ − µ2 eµ2xm

∫ xm

0
M
′
(τ)e−µ2τ dτ (3.10)

for five unknown quantitiesx1, x2, xm, u, Tm. We can rewrite the integrals in the right-hand
sides of (3.6)–(3.10) as∫ x1

0
M
′
(τ)e−µnτ dτ = −aM0

∫ η1

0
ea(e

−η−1)−η− 1
B νnη dη (n = 1,2), (3.11)

∫ xm

0
M
′
(τ)e−µnτ dτ = −aM0

∫ ηm

0
ea(e

−η−1)−η− 1
B νnη dη, (3.12)

∫ x2

x1

M
′
(τ)e−µnτ dτ = M0 ea(ζ−1)+aζη1

ζBa

ζBa + νn (e(−aζ+
1
B νn)η2 − e−(aζ+

1
B νn)η1), (3.13)

where

νn = κ

u
µn, ηn = Bξn, ηm = Bξm, ζ = e−Bξ1 (n = 1,2). (3.14)

To simplify the integrals in the right-hand sides of (3.11)–(3.13), we assume that

B ≡ κA1

u2
= O

(
1

ε

)
� 1.

The validity of this assumption lies in the fact that we expect the major quantities which com-
prise the parameterB (i.e.,Tm andu) to have values very close to their adiabatic counterparts
(these expectations are shown below to indeed be true), coupled with the knowledge that,
in the adiabatic case,B was shown to be anO(1/ε) quantity. In addition, this assumption
is motivated by our study of the propagation of an exothermic reaction wave in which one
overall reaction occurs [4], where we showed that

B = Eq

RT 2
m

.
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This parameter is also known as the Zeldovich number, and it is large due to a large activation
energy of the reaction. Knowing thatB is large, and using (3.11)–(3.13), we can show that
Equations (3.6)–(3.9) yield identical results to leading order. Thus, instead of studying these
equations in their present form, we can examine a new set of equations given by the differences
(3.9)–(3.6), (3.8)–(3.6), and(3.7)–(3.6) (all taken to the leading order in smallε). These will
be supplemented by theO(1) terms in Equation (3.10), which gives us five equations

d
Tm − T0

qM0
= 1− ea(ζ−1)+aζ(η1−η2), (3.15)

ad e−aI (η1) = ν1η1 ea(ζ−1)+aζ(η1−η2) − dη1 ea(ζ−1) − η2ν1, (3.16)

dB
T2− T1

qM0
= ad e−aI (η1)− d ea(ζ−1)

(
eaζ(η1−η2) − 1

aζ
+ η2 eaζ(η1−η2) − η1

)
+η2ν2

(
1− ea(ζ−1)+aζ(η1−η2)

)
, (3.17)

dB
Tm − T1

qM0
= −ν1ηm ea(ζ−1)+aζ(η1−η2) + dηm ea(e

−ηm−1) + η2νm + ad e−aI (ηm), (3.18)

ν1 ea(ζ−1)+aζ(η1−η2) − d ea(e
−ηm−1) − ν2 = 0, (3.19)

where

I (w) ≡
∫ w

0
eae−η−ηη dη. (3.20)

Next we want to consider the case of a nearly adiabatic process. Our motivation for ex-
amining this particular case is the knowledge (c.f. the Appendix below) that, in the case of
one overall reaction, extinction occurs for very small values ofα (specifically,α is inversely
proportional to the Zeldovich number), and that past this point (the extinction limit), there will
be no traveling wave solutions. A similar behavior is expected in the frontal polymerization
problem. For very small values ofα the quantitiesξ1, ξ2, andξm will no longer be small, in
fact they areO(1) in smallα. This is the case because for smaller values ofα, the reaction
zone gets somewhat ‘stretched out,’ increasing the values of these quantities. Withξ1, ξ2, and
ξm no longer being small andB remaining large,η1, η2, andηm will all be large, andζ will
now be exponentially small. In addition, we can approximate the first part of Equation (3.5)
as

d ≈ 1+ 2δ

where

δ = κα

u2
(3.21)

is a small dimensionless quantity.
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Under these assumptions (which turn out to be self-consistent), the above five equations
can be reduced to the following four nondimensional expressions

e−ηm = 1+ 1

a
log

[
e−a + δ(1− e−a0)

]
, (3.22)

a = a0 eZσ , (3.23)

δ = σ + e−a0 − e−a

2(1− e−a0)
, (3.24)

1

α
= 2nZ e−a(1− e−a0)an+1

A1(Tm)a
n
0(σ + e−a0 − e−a)

I (ηm), (3.25)

where

a0 = A2(Tad)

A1(Tad)
J0, θ = Tm − T0

qM0
, σ = Tad− Tm

qM0
,

Z = E1− E2

RT 2
ad

qM0, n = E1

E1 − E2

(3.26)

were introduced as nondimensional parameters. HereTad is the burning temperature in the
adiabatic case.

It is important to notice that Equation (3.25) givesα as a function of only one variable,σ .
This may not be immediately apparent, but by using equations (3.22)–(3.24), we can express
all the variables in Equation (3.25) in terms ofσ .

Now that we haveα as a function ofσ only, we can find (in terms ofσ ) the critical value
of α (i.e., where the extinction limit will be) and how it is affected by changes in certain
parameters of the problem. The graph ofα as a function ofσ was found to be a curve with
a maximum. Using elementary methods, we may find the maximum value ofα by simply
differentiatingα with respect toσ and finding the zero of the derivative. After computation
and simplification, we have the following implicit equation forσext

n = a(σext+ e−a0)

σext+ e−a0 − e−a
+ I (ηm)−1

×
[

ea

a

(
σext+ e−a0 + e−a

2
− 1

)
+ 1

2
ηm(σext+ e−a0)ea + ηm ea

e−Zσext

a0Z

]

+ a

σext+ e−a0 − e−a
e−Zσext

a0Z
, (3.27)

whereηm, a, andδ are given by (3.22)–(3.24) withσ replaced byσext.
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4. Results

Examining Equation (3.27) numerically, we were able to observe how variation of either the
initial temperature of the monomer or the values of certain kinetic parameters affect the maxi-
mum temperature in the front, the final degree of conversion of the monomer, the propagation
velocity, and other quantities of interest at the extinction limit.

Unless otherwise noted, we used the following parameter values [4]:

k0
d = 4× 1012 1/s, k0

p = 5× 106 L/(s·mol), k0
t = 3× 107 L/ (s·mol),

Ed = 27 kcal/mol, Ep = 4·7 kcal/mol, Et = 0·7 kcal/mol

q = 33·24 L·K/mol, M0 = 6 mol/L, κ = 0·0014 cm2/s

(4.1)

Figures 2–5 show the effects that changes in the activation energy of the decomposition
reaction (Ed ), the initial temperature of the system (T0) and the initial concentration of initia-
tor (I0) have on the following quantities at the extinction limit: the ratio of the propagation
velocity of the front at the extinction limit to the velocity in the adiabatic case (uext/uad),
the nondimensional maximum temperature of the system (σext), the quantityκαext/u

2
ad, which

characterizes the heat-loss coefficient at the extinction limit, the ratios of monomer remaining
once the reactions have been completed (Mext/Mad), and the heat-loss coefficient (αext).

The reason that we chose the activation energy from the decomposition reaction as a
parameter to vary was that this corresponds to the experimental situation where numerous
initiators can be used for the same monomer. Similarly, the initial temperature and initiator
concentration are the parameters that can be experimentally controlled.

It has been customary to assume that the kinetic parametersEeff andkeff given by (2.8)
are the actual effective kinetic parameters of the process,i.e., in many cases the behavior of
the polymerization process is accurately described by one overall reaction with these effective
kinetic parameters. In particular, we have shown in [4] that if the amount of initiator initially
present in the mixture is sufficiently high, the propagation velocity of the wave is indeed given
by the usual formula [5] for a one-step chemical process with the activation energyEeff and the
pre-exponential factorkeff. Thus, it is interesting to see how the nonadiabatic polymerization
process compares with one-step nonadiabatic reaction with the effective kinetic parameters.
The quantities that we will compare areuext/uad, σext andκαext/u

2
ad. In case of one reaction

(c.f. the Appendix) withT0 = 300 K

uext

uad
= e−1/2 ≈ 0·61, σext = Rg(T0+ qM0)

2

Eeff qM0
≈ 0·14,

καext

u2
ad

= Rg(T0+ qM0)
2

2Eeff qM0
e−1 ≈ 0·026,

where the parameter values (4.1) have been used to computeEeff = 17·85 kcal/mol.
The plots in Figures 2a, b, show howuext/uad is affected by changes inI0, T0, andEd .

For all the plots the value ofuext/uad is sufficiently close to 0·61. Thus, in this respect the
polymerization process is well described by a single exothermic reaction with effective kinetic
parameters. AsI0 increases, the magnitude ofuext increases for all values ofT0. This occurs
because the more initiator is present, the more free radicals will be produced, and if there
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Figure 2. Effects of changes in (a) the initial temperature, and (b) the activation energy (for the decomposition
reaction) on the ratio of the propagation velocity at the extinction limit to that for the adiabatic case. Curve 1 in
(a) corresponds toT0 = 300 K, curve 2 –T0 = 280 K, curve 3 –T0 = 260 K, curve 4 –T0 = 240 K. Curve 1
in (b) corresponds toEd = 25 kcal/mol, curve 2 –Ed = 26 kcal/mol, curve 3 –Ed = 27 kcal/mol, curve 4 –
Ed = 28 kcal/mol.

are more free radicals present for the propagation reactions, there will be more heat produced
(because they are the most exothermic reactions in the process). The decrease inuext/uad for
T0 = 240 K andT0 = 260 K (curves 3 and 4 in Figure 2a) is explained by the fact thatuad

increases withI0 for these ranges of initial temperatures at a faster rate thanuext.
Similarly, increases inEd will cause slower decomposition (because the reaction constant

containsEd as a negative exponent) and therefore a slower speed of propagation. This is true
for both the adiabatic and extinction cases, withuad being more affected by an increase inEd
thanuext, which results in an increase inuext/uad with Ed (Figure 2b).
The plots in Figures 3a, b show howσext is affected by changes inI0, T0, andEd , where

σext = Tad− Text

qM0

is the nondimensionalized difference between the maximum temperatureTad achieved in the
adiabatic case and that at the extinction limit (Text). For the case of one overall reaction with
the effective parameters this quantity is somewhat lower (0·14). Thus, nonadiabatic polymer-
ization fronts can exist at maximum temperatures lower than those of a single-step reaction
wave. We can give a simple physical explanation for this by comparing the mechanisms of
extinction for the two types of waves. For a single-step reaction wave, heat losses slow down
the wave, and when this occurs, even more heat is removed to the environment, which retards
the wave even further, leading to extinction. In the case of frontal polymerization the same
mechanism also works, but in addition to that there is a mechanism preventing extinction:
when the wave slows down, the monomer has more time to react, less monomer is left behind
the wave (c.f.Figure 5 below), and more heat is released in the polymerization reactions. This
additional heat release stabilizes the process.

Increases inσext with the initial concentration of the initiator for sufficiently small concen-
tration ofI0 occur because the initiator limits the polymerization process. For larger concen-
trations of the initiatorσext no longer depends onI0. We also observe thatσ ext increases with
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Figure 3. Effects of changes in (a) the initial temperature, and (b) the activation energy (for the decomposition
reaction) onσext, the difference between the maximum (nondimensional) temperatures in the adiabatic and ex-
tinction cases. Curve 1 in (a) corresponds toT0 = 300 K, curve 2 –T0 = 280 K, curve 3 –T0 = 260 K, curve
4 – T0 = 240 K. Curve 1 in (b) corresponds toEd = 25 kcal/mol, curve 2 –Ed = 26 kcal/mol, curve 3 –
Ed = 27 kcal/mol, curve 4 –Ed = 28 kcal/mol.

T0. In fact, bothTad andText increase withT0, but Text does so at a slower rate, due to the
aforementioned stabilizing mechanism.

Figure 4 provides an additional confirmation of the stability of the polymerization front to
heat losses. It is seen here that the maximum allowed values of the heat-loss coefficient for
which the wave still exists are well above the corresponding quantity for a single reaction. Fi-
nally, Figure 5 shows that the amount of monomer left in nonadiabatic fronts at the extinction
limit is significantly smaller than that in the adiabatic case.

5. Concluding remarks

In this paper, we were able to examine the ways in which heat-loss affects free-radical poly-
merization fronts. We showed that, in many ways, this nonadiabatic frontal polymerization
process can be fairly accurately described – both qualitatively and quantitatively – by one
overall reaction with effective kinetic parameters. The exception to this is the aforemen-
tioned mechanism indigenous to frontal polymerization, which allows for greater amounts
of heat-loss and higher conversion than predicted by the single-reaction model.

It would be interesting to see some experimental data concerning nonadiabatic frontal
polymerization, which, to the best of our knowledge does not exist at this point. An efficient
way to perform such experiments seems to be to change the diameter of the test tube, since
the heat-loss coefficientα is typically inversely proportional to this diameter.
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Figure 4. Effects of changes in the activation en-
ergy (for the decomposition reaction) on the quan-
tity καext/u

2
ad. Here curve 1 corresponds toEd =

25 kcal/mol, curve 2 –Ed = 26 kcal/mol, curve 3 –
Ed = 27 kcal/mol, curve 4 –Ed = 28 kcal/mol.

Figure 5. Effects of changes in the initial tempera-
ture on the ratio of the monomer remaining in the
nonadiabatic to the amount remaining in the adiabatic
cases after completion of the reactions. Curve 1 cor-
responds toT0 = 300 K, curve 2 –T0 = 280 K, curve
3 –T0 = 260 K, curve 4 –T0 = 240 K.

.

Appendix: One-step exothermic reaction wave

In order to justify the use of a step function in place of the usual Arrhenius-type tempera-
ture dependence, we consider a simpler problem: a general first-order exothermic reaction.
Propagation of the wave in this case is described by the system of two equations

κT
′′ − uT ′ + qk(T )a − α(T − T0) = 0, (A.1)

−ua′ − k(T )a = 0, (A.2)

whereT is the temperature,κ is the thermal diffusivity,u is the propagation velocity,q is
the temperature increase in the reaction,a is the concentration of the deficient reactant in the
initial mixture, α is the heat-loss coefficient, andk(T ) is the temperature dependence of the
reaction rate,

k(T ) = k0 e−E/RgT . (A.3)

HereE is the activation energy, andk0 is the pre-exponential factor. The system of equations
is considered on the entirex-axis subject to the boundary conditions

x →−∞ : T = T0, a = 1, (A.4)

x →∞ : T = T0, (A.5)

whereT0 is the ambient temperature.
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Similarly to the system discussed in the body of this paper, we replace the usual Arrhenius
temperature dependence by a step function

k̂(T ) =
{

0, T < Tig,

A, T > Tig,
(A.6)

where

Tig = Tm(1− ε), A = k(Tm), ε = RgTm

E
. (A.7)

Here,Tig is the temperature above which the reaction occurs,Tm is the maximum temperature
attained, andε is a small dimensionless parameter. Because we have replaced the Arrhenius
temperature dependence by a step function, the spatial region fromx = −∞ to x = +∞
can be divided into three distinct regions: one where the reaction has not yet begun because
the temperature is less thanTig, one where the reaction occurs (T > Tig), and one where the
reaction has ceased because the temperature drops belowT ig due to heat loss. Because the
system is invariant under spatial translation, we can name the points in space separating these
three regions asx = 0 andx = xs , so that the system reduces to

κT
′′ − uT ′ − α(T − T0) = 0, −ua′ = 0 (x < 0), (A.8)

κT ′′ − uT ′ + qaA − α(T − T0) = 0, −ua′ − Aa = 0 (0< x < xs), (A.9)

κT
′′ − uT ′ − α(T − T0) = 0, −ua′ = 0 (x > xs), (A.10)

with the matching conditions

T (0−) = T (0+) = Tig, T
′
(0−) = T ′(0+), a(0−) = a(0+), (A.11)

T (x−s ) = T (x+s ) = Tig, T
′
(x−s ) = T

′
(x+s ), a(x−s ) = a(x+s ), (A.12)

T (xm) = Tm, T
′
(xm) = 0, (A.13)

wherexm, 0 < xm < xs , is the point in space where the temperature reaches its maximum
value,Tm.

Solving equations (A.8)–(A.10) and applying matching and boundary conditions we have

T (x) = T0+ (Tig − T0)eµ1x, a(x) = 1 (x < 0), (A.14)

T (x) = T0+
[
Tig − T0− (ν2+ B)1

]
eµ1x + (ν1+ B)1eµ2x − d1e−

A
u x,

a(x) = e−(A/u)x (0< x < xs), (A.15)

T (x) = T0+ (Tig − T0)eµ2(x−xs), a(x) = e−(A/u)xs ≡ af (x > xs), (A.16)

whereaf is the concentration of the reactant after the reaction has run to completion. The
following parameters were introduced

δ = κα

u2
, d = √1+ 4δ, µ1,2 = u

2κ
(1± d),

B = κA

u2
, ν1,2 = κ

u
µ1,2, 1 = q

d(1+ B − δ
B
)
.

(A.17)
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We now use the remaining matching conditions to derive the four equations necessary to
determine the four remaining unknowns:xm, xs , u, andTm. Applying these conditions we
obtain[

Tig − T0− (ν2+ B)1
]

eν1ξs + (ν1+ B)1eν2ξs − d1e−Bξs = Tig − T0, (A.18)

ν1
[
Tig − T0− (ν2+ B)1

]
eν1ξs + ν2(ν1+ B)1eν2ξs + Bd1e−Bξs

= (Tig − T0)ν2, (A.19)[
Tig − T0− (ν2+ B)1

]
eν1ξm + (ν1+ B)1eν2ξm − d1e−Bξm = Tm − T0, (A.20)

ν1
[
Tig − T0− (ν2+ B)1

]
eν1ξm + ν2(ν1+ B)1eν2ξm + Bd1e−Bξm = 0, (A.21)

where

ξs = u

κ
xs, ξm = u

κ
xm. (A.22)

In order to simplify (A.18)–(A.21) further, we consider the limitε � 1. In this limit, we can
make the following assertions

B = O
(

1

ε

)
, ξs = O(ε), ξm = O(ε), δ = O(1). (A.23)

In addition to this, we introduce the following nondimensional temperature

θ = Tm − T0

q
, (A.24)

whereθ is anO(1) quantity. Taking Equations (A.18)–(A.21) to leading order and simplifying
we arrive at the following four equations

1+ θν1Bξs − Bξs − e−Bξs = 0, (A.25)

1+ θν1Bξm − Bξm − e−Bξm = εBTm/q, (A.26)

dθ − 1+ e−Bξs = 0, (A.27)

ν1θ − 1+ e−Bξm = 0. (A.28)

Eliminatingξs by using Equations (A.25) and (A.27), andξm by using Equations (A.26) and
(A.28) we obtain two equations implicitly involving two unknowns (Tm andu)

exp
[
− dθ

1− θν1

]
= 1− dθ, (A.29)

exp
[
−θν1− εBTm/q

1− θν1

]
= 1− θν1. (A.30)
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Similarly to what was done in the body of the paper, we examine the case of small values of
α. Under this assumption,

δ � 1, d ≈ 1+ 2δ, ν1 ≈ 1+ d, σ ≡ 1− θ = Tad − Tm
q

� 1, (A.31)

whereTad = T0 + q is the maximum temperature in the adiabatic case. With these approxi-
mations, Equations (A.29) and (A.30) can be rewritten as

exp
[
−1+ 2δ − σ − 2δσ

σ − δ + σδ
]
= σ − 2δ + 2δσ, (A.32)

exp

[
−1− εTmB/q + δ − σ − δσ

σ − δ + σδ
]
= σ − δ + σδ. (A.33)

Since the exponent in Equation (A.32) is very large (and thus the term itself will be exponen-
tially small), the right-hand side of that equation can be approximated, to exponentially small
error, as zero,

σ − 2δ + 2δσ = 0.

But because the quantityεTmB/q may be close to 1, the same cannot be said about Equation
(A.33). Thus, neglectingonlyexponentially small terms, we can rewrite Equations (A.32) and
(A.33) as

σ = 2δ

1+ 2δ
, (A.34)

exp

[
1− 1+ 2δ

δ

(
1− εTmB

q

)]
= δ

1+ 2δ
. (A.35)

From the definitions ofε, δ, andB given in Equations (A.7) and (A.17),

εTmB

q
= RgT

2
m

Eq

Aδ

α
.

Substituting this expression in Equation (A.35) and solving forα, we have

α =
(

1− δ

1+ 2δ
+ δ

1+ 2δ
log

δ

1+ 2δ

)−1

δ
RgT

2
m

Eq
A(Tm). (A.36)

Using the expressions forσ given in Equations (A.31) and (A.34), we can rewriteTm as

Tm = Tad− 2δq

1+ 2δ
.

Substituting this expression in the definition ofA given by Equations (A.3) and (A.7) and
realizing thatδ � 1 andE/(RgTad)� 1, we may write

A(Tm) = k0 exp

[
− E

RgTad(1− 2δq/[Tad(1+ 2δ)])
]

≈ k0 exp

[
− E

RgTad

(
1+ 2qδ

Tad

)]
. (A.37)
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Taking Equation (A.36) to leading order in smallδ and replacingA(Tm) with the approxima-
tion from Equation (A.37), we have

α = δRgT
2
ad

Eq
k0 exp

(
− E

RgTad

)
exp

(
−2δ

Eq

RgT
2
ad

)
. (A.38)

Using an expression for the propagation velocity in the adiabatic case [4],

u2
ad= κA(Tad)

RgT
2
ad

Eq

we can rewrite (A.38) as

α = u2
ad

1

κ
δ exp

(
−2δ

Eq

RgT
2
ad

)
≡ F(δ). (A.39)

The functionF(δ) has a global maximum at

δ = δext = 1

2

RgT
2
ad

Eq
(A.40)

with the corresponding maximum value being

αext = F(δext) = u2
ad

1

κ
δext e

−1. (A.41)

Forα > αext equation (A.38) has no solutionsα, which means that the original problem has
no solutions in the form of a traveling wave. Using (A.17) and (A.41), we find

u2
ext =

αextκ

δm
= u2

ade−1

which recovers the result in [5]. The derivation of this result seems to support the use of a step
function in place of the usual Arrhenius-dependence.
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